The Handling of Missing Data in Molecular Epidemiology Studies
نویسندگان
چکیده
منابع مشابه
The handling of missing data in molecular epidemiology studies.
Molecular epidemiology studies face a missing data problem, as biospecimen or imaging data are often collected on only a proportion of subjects eligible for study. We investigated all molecular epidemiology studies published as Research Articles, Short Communications, or Null Results in Brief in Cancer Epidemiology, Biomarkers & Prevention from January 1, 2009, to March 31, 2010, to characteriz...
متن کاملData Handling in Epidemiology
EPIDEMIOLOGY. Co-ordinating Editor, W. W. Holland. (Pp. viii+212; figs. 26. £3.25). London: Oxford University Press, 1970. THIS book deals, in 15 chapters by different authors, with seven topics: asking the question, study design, collection of data, record linkage, data processing, analysis, and implications. They discuss most aspects of epidemiological research, from formulating hypotheses to...
متن کاملMissing Data Handling in Multi-Layer Perceptron
Multi layer perceptron with back propagation algorithm is popular and more used than other neural network types in various fields of investigation as a non-linear predictor. Though MLP can solve complex and non-linear problems, it cannot use missing data for training directly. We propose a training algorithm with incomplete pattern data using conventional MLP network. Focusing on the fact that ...
متن کاملHandling Missing Values in Data Mining
Missing Values and its problems are very common in the data cleaning process. Several methods have been proposed so as to process missing data in datasets and avoid problems caused by it. This paper discusses various problems caused by missing values and different ways in which one can deal with them. Missing data is a familiar and unavoidable problem in large datasets and is widely discussed i...
متن کاملthe clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cancer Epidemiology Biomarkers & Prevention
سال: 2011
ISSN: 1055-9965,1538-7755
DOI: 10.1158/1055-9965.epi-10-1311